Geometric mean

From ACT Wiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Geometric mean returns or growth are calculated by taking account of compounding.

(Contrasted with the arithmetic mean, which ignores compounding).


Example 1: Positive returns or growth

The geometric mean return calculated from sample returns of 4%, 5% and 6% is given by:

(1.04 x 1.05 x 1.06)(1/3) - 1

= 4.9968%.


Relationship between geometric mean and arithmetic mean

When returns or growth are positive, geometric means are smaller figures than arithmetic means.

In Example 1 above, the arithmetic mean is:

(4% + 5% + 6%) / 3 = 5.0000%


The geometric mean of +4.9968% is a smaller positive number than the arithmetic mean of +5.0000%.


On the other hand, when returns or growth are negative, the geometric mean is a larger negative number - further away from zero - than the arithmetic mean.


Example 2: Negative returns or decline

The geometric mean return calculated from three negative sample returns of -(4)%, -(5)% and -(6)% is given by:

( (1 - 0.04) x (1 - 0.05) x (1 - 0.06) )(1/3) - 1

(0.96 x 0.95 x 0.94)(1/3) - 1

= -(5.0035)%.


The negative geometric mean of -(5.0035)% is a larger negative number - further away from zero - than the arithmetic mean of -(5.0000)%.

(The arithmetic mean of the negative returns of -(4)%, -(5)% and -(6)% is the three items added together and divided by 3.)


See also