Z statistic

From ACT Wiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A commonly used transformation of a normal distribution.

The resulting standardised normal distribution has a mean of 0 and a standard deviation of 1.


It is used extensively in hypothesis testing.


The Z statistic is also known as the 'Z score'.


So - for example - if a data point has a Z score (or Z statistic) of -1.64, then it lies 1.64 standard deviations below the mean.

The Z score is calculated as the difference between the data point (X) and the mean E[x], all divided by the standard deviation of the population (SD).


For example if:

the mean (E[x]) of a population = 100;

the standard deviation (SD) = 10; and

a given observation (or data point) = 83.6;

then the Z score (Z) is calculated as: Z = (X - E[x])/SD

= (83.6 - 100 = -16.4)/10

= - 1.64 standard deviations.


In this case the Z score is negative, indicating that the data point (83.6) lies below the mean (of 100).


See also